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What does the word “Computer” mean?

Oxford Dictionary

“a person who makes calculations, 
especially with a calculating machine.”

Wikipedia
“The term "computer", in use from the mid 17th 

century, meant "one who computes": a person 
performing mathematical calculations.”
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Who are the programmers

it’s always been people
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it’s always been people
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Who are the programers

lots of people
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Why people?

human computers seem quaint today

will human programmers seem quaint tomorrow ?
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programming is changing
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Functional 
Requirements

Non-Functional 
Requirements

Memory 

Execution Time 

Energy

Size

Bandwidth 
functionality of 
the Program
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Multiplicity

Multiple 
Devices

Conflicting 
Objectives

Multiple 
Platforms
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Functional 
Requirements

Non-Functional 
Requirements

Which requirements must be human coded ?

humans have to 
define these
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Functional 
Requirements

Non-Functional 
Requirements

Which requirements are essential to human ?

humans have to 
define these

we can optimise 
these
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Can it work ?
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Software Uniqueness

                             500,000,000 LoC
one has to write approximately 6 statements 
before one is writing unique code



CREST Justyna PetkeGenetic Improvement

Software Uniqueness

                             500,000,000 LoC
one has to write approximately 6 statements 
before one is writing unique code

M. Gabel and Z. Su. 
A study of the uniqueness of source code. (FSE 2010)

The space of candidate 
programs is far smaller 
than we might suppose.

“

”
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Software Robustness

after one line changes up to 89% of programs 
that compile run without error
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Software Robustness

after one line changes up to 89% of programs 
that compile run without error

W. B .Langdon and J. Petke 
Software is Not Fragile. (CS-DC 2015)

 Software engineering 
artefacts are more robust 
than is often assumed.

“

”
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Non-Functional 
Requirements

How can we optimise 
these ?
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Genetic Improvement

http://www.cs.ucl.ac.uk/staff/ucacbbl/gismo/
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GP
Progra

ms

Non-functional 
property Test 

Fitness

Test 
data

Sensitivity 
Analysis

Efficiency Improvement

Bowtie
2

Progra
ms

Progra
ms

Progra
ms

Bowtie
Improv

W. B. Langdon and M. Harman
Optimising Existing Software with Genetic Programming. 
Transactions on Evolutionary Computation (TEC) 2015

70 times faster
30+ interventions
7 after clean up

slight semantic improvement
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Mutation Source file Line (type) Orig. code New code

replaced bt2_io.cpp 622 (for2) i < offsLenSampled i < this->_nPat

replaced sa_rescomb.cpp 50 (for2) i < satup_->offs.size() 0

disabled sa_rescomb.cpp 69 (for2) j < satup_->offs.size()

replaced aligner_swsse_ee_u8
.cpp 707

vh = 
_mm_max_epu8(vh, 

vf);
vmax = vlo;

deleted aligner_swsse_ee_u8
.cpp 766 pvFStore += 4;

replaced aligner_swsse_ee_u8
.cpp 772 _mm_store_si128(pv

HStore, vh);

vh = 
_mm_max_epu8(vh, 

vf);

deleted aligner_swsse_ee_u8
.cpp 778

ve = 
_mm_max_epu8(ve, 

vh);

Runtime reduction from 12 days to 4 hours
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GP
Progra

ms

Non-functional 
property Test 

Fitness

Test 
data

Sensitivity 
Analysis

Efficiency Improvement

CUDA
Progra

ms
Progra

ms
Progra

ms
CUDA
Improv

W.B. Langdon , B.Y.H. Lam , J. Petke & M. Harman
Improving CUDA DNA Analysis Software with Genetic Programming
Genetic and Evolutionary Computation Conference (GECCO) 2015
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Efficiency Improvement

Challenge: Use genetic improvement to improve program 
efficiency of a state-of-the-art bioinformatics program for DNA 
sequence mapping called BarraCUDA, consisting of 8,000+ lines 
of code.

Results: The improved version of BarraCUDA is up to 3x 
faster than the original on large real-world datasets. The new 
version has been adopted into development and has been 
downloaded over 1,000 times so far. Ported by IBM to one of 
their super computers and adopted by Lab7.

W.B. Langdon , B.Y.H. Lam , J. Petke & M. Harman
Improving CUDA DNA Analysis Software with Genetic Programming
Genetic and Evolutionary Computation Conference (GECCO) 2015
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Fitness
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Software Specialisation
with Transplants
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Question

Can we improve the efficiency of an already highly-optimised piece of

software using genetic programming?

Genetic Improvement Justyna Petke



Motivation for choosing a SAT solver

Bounded Model Checking

Planning

Software Verification

Automatic Test Pattern Generation

Combinational Equivalence Checking

Combinatorial Interaction Testing

and many other applications..

Genetic Improvement Justyna Petke



Motivation for choosing a SAT solver

MiniSAT-hack track in SAT solver competitions

- good source for software transplants

Genetic Improvement Justyna Petke



Contributions

Introduction of multi-donor software transplantation

Use of genetic improvement as means to specialise software

Genetic Improvement Justyna Petke
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GP
Progra

ms

Non-functional 
property Test 

Fitness

Test 
data

Sensitivity 
Analysis

Software Specialisation
with Transplants

MiniSat

MiniSat

MiniSat

v1

v2

v3

Progra
ms

Progra
ms

Progra
ms

MiniSat
Improv

Justyna Petke, Mark Harman, William B. Langdon and Westley Weimer
Using Genetic Improvement & Code Transplants to Specialise a C++ 
program to a Problem Class
European Conference on Genetic Programming (EuroGP) 2014



Program Representation

Changes at the level of lines of source code

Each individual is composed of a list of changes

Specialised grammar used to preserve syntax

Genetic Improvement Justyna Petke



Example

Genetic Improvement Justyna Petke



Code Transplants

GP has access to both:

• the host program to be evolved

• the donor program(s)

code bank contains all lines of source code GP has access to

Genetic Improvement Justyna Petke



Question

How much runtime improvement can we achieve?

Genetic Improvement Justyna Petke
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GP
Progra

ms

Non-functional 
property Test 

Fitness

Test 
data

Sensitivity 
Analysis

Software Specialisation
with Transplants

MiniSat

MiniSat

MiniSat

v1

v2

v3

Progra
ms

Progra
ms

Progra
ms

MiniSat
Improv

Justyna Petke, Mark Harman, William B. Langdon and Westley Weimer
Using Genetic Improvement & Code Transplants to Specialise a C++ 
program to a Problem Class
European Conference on Genetic Programming (EuroGP) 2014

Multi-donor transplant
Specialised for a particular 

application domain
17% faster
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Search

Non-functional 
property Test 

Fitness

Test 
data

Sensitivity 
Analysis

Real-world cross-system 
transplantation

Donor

Host

feature
Host’

feature

Autotransplanted new 
functionality and passed 
all tests for 12 out of 15 
systems & transplanted 
a video encoding into 
the VLC media player

Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke  
Automated Software Transplantation  
International Symposium on Software Testing and Analysis (ISSTA) 2015
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Automated Software Transplantation
E.T. Barr, M. Harman, Y. Jia, A. Marginean & J. Petke

ACM Distinguished Paper Award at ISSTA 2015  

Gold ‘Humie’ Award Winner at GECCO 2016

coverage in

article in

over 2,000 shares of



Video Player

Start from 
scratch

Why Autotransplantation?
Check open 

source repositories 
Why not  
handle 
 H.264?

~100 players
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Automated Software 
Transplantation

Host

Donor 

OrganOrgan

ENTRY

V

Organ Test 
Suite

Manual Work:

Organ Entry 

Organ’s Test Suite 

Implantation Point
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μTrans
Host

Donor 

Stage 1: 
Static Analysis

Host 
Beneficiary

Stage 2: 
Genetic 

 Programming

Stage 3: 
Organ 

Implantation

Organ Test 
Suite

Implantation 
Point

Organ  
Entry
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Subjects

Minimal size: 0.4k 

Max size: 422k 

Average Donor:16k 

Average Host: 213k

Subjects Type Size 
KLOC

Idct Donor 2.3
Mytar Donor 0.4
Cflow Donor 25

Webserver Donor 1.7
TuxCrypt Donor 2.7

Pidgin Host 363
Cflow Host 25
SoX Host 43

           Case Study
x264 Donor 63
VLC Host 422

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
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Experimental Methodology 
and Setup

μSCALPEL

Host
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OEOrgan Test 
Suite
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64 bit Ubuntu 14.10 
16 GB RAM 
8 threads
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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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in 12 out of 15 experiments 
we successfully autotransplanted 

new functionality



Case Study 

Transplant Time & Test Suites
Time (hours) Regression Regression++ Acceptance

H.264 26 100% 100% 100%
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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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within 26 hours performed a task
that took developers 

an avg of 20 days of elapsed time
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GP

Non-functional 
property Test 

Fitness

Test 
data

Sensitivity 
Analysis

Memory vs speed trade offs 

System

malloc

System
optimised

malloc

Fan Wu, Westley Weimer, Mark Harman, Yue Jia and Jens Krinke  
Deep Parameter Optimisation  
Genetic and Evolutionary Computation Conference (GECCO) 2015

Improve execution time 
by 12% or achieve a 21% 
memory consumption 
reduction
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application 2

application 3

Improved MiniSat
application 1

Improved MiniSat

Improved MiniSat

Bobby R. Bruce Justyna Petke Mark Harman
Reducing Energy Consumption Using Genetic Improvement
Conference on Genetic and Evolutionary Computation (GECCO 2015)

Energy consumption can 
be reduced by up to 25%

MiniSat

MiniSat

MiniSat

v1

v2

v3
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Grow and Graft 
new functionality

GP

Non-functional 
property Test 

Fitness

Test 
data

Sensitivity 
AnalysisFeature

Grow Graft

Human
Knowledge Feature

Host System

Mark Harman, Yue Jia and Bill Langdon,  
Babel Pidgin: SBSE can grow and graft entirely new functionality into a real world system  
Symposium on Search-Based Software Engineering (SSBSE) 2014 (Challenge track)
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Genetic Improvement Applications

Improving software efficiency

Improving energy consumption

Porting old code to new hardware

Grafting new functionality into an existing system

Specialising software for a particular problem class

Other
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First International Workshop on 
Genetic Improvement 
at GECCO 2015, Madrid, Spain 
www.geneticimprovementofsoftware.com

Special Issue 
on GI

Special Session on GI  http://www.wcci2016.org/

Second International Workshop on Genetic Improvement 
at GECCO 2016, Denver, Colorado 

Genetic Improvement Visibility
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Genetic Improvement of Software
geneticimprovementofsoftware.com

Functional Properties Non-functional Properties

http://geneticimprovementofsoftware.com
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Memory 

Execution Time 

Energy

Size

Bandwidth 

New Feature

Functionality
Improvement

Bug RepairError

Genetic Improvement of Software
geneticimprovementofsoftware.com

Functional Properties Non-functional Properties

http://geneticimprovementofsoftware.com
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Pictures used with thanks from these sources

BBC_Micro: [Public domain], via Wikimedia Commons

Programmer: undesarchiv, B 145 Bild-F031434-0006 / Gathmann, Jens / CC-BY-SA [CC-BY-SA-3.0-
de (http://creativecommons.org/licenses/by-sa/3.0/de/deed.en)], via Wikimedia Commons

IMac: By Matthieu Riegler, Wikimedia Commons [CC-BY-3.0 (http://creativecommons.org/
licenses/by/3.0)], via Wikimedia Commons

Ada Lovelace:  By Alfred Edward Chalon [Public domain], via Wikimedia Commons

Stonehenge: By Yuanyuan Zhang [All right reserved] via Flickr
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